Abstract

The spatial frequency dependent detective quantum efficiency (DQE) of a CsI-CMOS x-ray detector was measured in two operating modes: a high dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calculations were performed using the IEC-62220-1-2 Standard. For detector entrance air kerma values between ~7 µGy and 60 µGy the DQE is similar in either HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 - 0.20 at the Nyquist frequency fN = 6.7 mm-1. In HDR mode the DQE remains virtually constant for operation with Ka values between ~7 µGy and 119 µGy but decreases for Ka levels below ~ 7 µGy. In HS mode the DQE is approximately constant over the full range of entrance air kerma tested between 1.7 µGy and 60 µGy but kerma values above ~75 µGy produce hard saturation. Quantum limited operation in HS mode for entrance kerma as small as 1.7 µGy makes it possible to use a large number of low dose views to improve angular sampling and decrease acquisition time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.