Abstract
Volatile organic compounds (VOCs) are an important indicator for fungal-infected wheat identification. This work proposes a novel approach for toxigenic Aspergillus flavus infected wheat identification through characteristic VOCs analyzed by nano-composite colorimetric sensors. Nanoparticles of poly styrene-co-acrylic acid (PSA), porous silica nanoparticles (PSN), and metal–organic framework (MOF) were combined with boron dipyrromethene (BODIPY) to fabricate nano-composite colorimetric sensors. The combination mechanisms for nanoparticles and the information extracted from nano-colorimetric sensors by digital images were analyzed in the current work. Furthermore, linear discriminant analysis (LDA) and k-nearest neighbor (KNN) were used comparatively to analyze the data from images, and toxigenic Aspergillus flavus infected wheat samples could be 100.00% correctly identified when using the optimal KNN model. This research contributes to the practical analysis of VOCs and the detection of toxigenic Aspergillus flavus infected wheat.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have