Abstract

In this study, vortical structures are detected on sparse Shake-The-Box data sets using the Coherent-Structure Colouring (CSC) algorithm. The performance of this Lagrangian approach is assessed by comparing the CSC-coloured tracks with the baseline vorticity field. The ability to extract vortical structures from sparse data is accessed on two Lagrangian particle tracking data sets: the flow past an Ahmed body and a swirling jet flow. The effects of two normalized parameters on the identification of vortical structures were defined and studied: the mean track length and the mean inter-particle distance. The accuracy of the vortical-structure detection problem through CSC is shown to improve with decreasing inter-particle distance values, whereas little dependence on the mean track length is observed at all. Overall, the CSC algorithm showed to yield accurate detection of coherent structures for inter-particle distances smaller than 15% of the characteristic dimension of the structure. However, the results quickly deteriorate for sparser Lagrangian data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.