Abstract

Glycopeptides, particularly the cell wall-acting antibiotic vancomycin, are the safest cure for methicillin-resistant Staphylococcus aureus. The aim of this study was to evaluate nonsusceptibility of clinical isolates of S. aureus to vancomycin and investigate mutations in vraSR, a cell wall synthesis regulator gene, in vancomycin-resistant strains. Susceptibility of 110 clinical strains of S. aureus to methicillin and vancomycin were determined using disc diffusion method and determination of minimum inhibitory concentration, respectively. Presence of mecA and vanA genes was determined by PCR. Determination of spa types and mutations of the vraSR gene in vancomycin nonsusceptible isolates were assessed by PCR-sequencing analyses. In total, 47 isolates (42.73%) were recognized as MRSA, three (2.73%) strains were resistant to vancomycin, and eight (7.27%) strains were vancomycin intermediates. The MIC of vancomycin was 4-64μg/ml in these isolates. All vancomycin nonsusceptible S. aureus strains were mecA positive and one isolate was positive for the vanA gene. Spa type t030 was found as the most common type. In vraSR sequence analysis, all 11 vancomycin nonsusceptible isolates had the D59E mutation in the vraR and E45G in vraS genes. R117H, R121S, and R121I are the other identified missense mutations in the vraR gene. The identification of a high percentage of MRSA and presence of VRSA and VISA isolates is a serious warning about the treatment of future MRSA infections and reveals the need for new and effective therapeutic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call