Abstract

β2-Microglobulin is a small, major histocompatibility complex class I-associated protein that undergoes aggregation and accumulates as amyloid deposits in human tissues as a consequence of long-term haemodialysis. The folding process of this amyloidogenic protein has been studied in vitro by diluting the guanidine hydrochloride-denatured protein in refolding buffer at pH 7.4 and monitoring the folding process by means of a number of spectroscopic probes that allow the native structure of the protein to be detected as it develops. These techniques include fluorescence spectroscopy, far and near-UV circular dichroism, 8-anilino-1-naphthalenesulfonic acid binding and double jump assays. All spectroscopic probes indicate that a significant amount of structure forms within the dead-time of stopped-flow measurements (<5 ms). The folding reaction goes to completion through a fast phase followed by a slow phase, whose rate constants are ca 5.1 and 0.0030 s −1 in water, respectively. Unfolding-folding double jump experiments, together with the use of peptidyl prolyl isomerase, reveal that the slow phase of folding of β2-microglobulin is not fundamentally determined by cis/trans isomerisation of X-Pro peptide bonds. Other folding-unfolding double jump experiments also suggest that the fast and slow phases of folding are not related to independent folding of different populations of protein molecules. Rather, we provide evidence for a sequential mechanism of folding where denatured β2-microglobulin collapses to an ensemble of partially folded conformations (I 1) which fold subsequently to a more highly structured species (I 2) and, finally, attain the native state. The partially folded species I 2 appears to be closely similar to previously studied amyloidogenic forms of β2-microglobulin, such as those adopted by the protein at mildly acid pH values and by a variant with six residues deleted at the N terminus. Since amyloid formation in vivo originates from partial denaturation of β2-microglobulin under conditions favouring the folding process, the long-lived, partially structured species detected here might be significantly populated under some physiological conditions and hence might play an important role in the process of amyloid formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.