Abstract

The role of air-sea interaction on Madden-Julian oscillation (MJO) propagations across the tropical Indian Ocean is analyzed using integrated multimission satellite measurements of sea surface height and outgoing longwave radiation (OLR). MJO-related activity is observed in both parameters in the eastern equatorial Indian Ocean indicating a unique interaction in this region. In the eastern Indian Ocean, atmospheric conditions appear to aid in the creation of equatorial Rossby waves, while in the central and western Indian Ocean, different phases of oceanic Rossby wave propagations seem to have a strong influence on atmospheric conditions associated with the MJO. The downwelling phase of equatorial Rossby waves corresponds to a strengthening of OLR anomalies in extent and magnitude across the equatorial Indian Ocean, while the upwelling phase appears to weaken atmospheric MJO activity. This study improves climate research by identifying the MJO signal in altimetry data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.