Abstract
The paper proposes a phase-space based algorithm applying the Euclidian distance measure enabling detection of heartbeats and characteristic (fiducial) points from a single-lead electrocardiogram (ECG) signal. It extends the QRS detection in the phase space by detecting the P and T fiducial points. The algorithm is derived by reconstructing the ECG signals in a two-dimensional (2D) phase space according to the delay method and utilizes geometrical properties of the reconstructed phase portrait of the signal in the phase space for the heartbeat and fiducial-point detection. It uses adaptive thresholding and the Euclidian distance measure between the signal points in the phase portrait as an alternative to the phase-portrait area calculation (Lee et al., 2002 [1]). It was verified with the QT Database (2011; [2]) and its performance was assessed using sensitivity (Se) and the positive predictive value (PPV). Results for the proposed algorithm are 99.06%, 99.75% and 99.66% for Se and 94.87%, 99.75% and 99.66% for PPV for the P points, heartbeats and T points, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have