Abstract

Background. The alpha-test allows to detect inherited genetic changes of different types, as well as phenotypic expression of primary DNA lesions before the lesions are fixed by repair. Here we investigate ability of the alpha-test to detect base modifications induced by 6-N-hydroxylaminopurine (HAP) and determine frequency of inherited and non-inherited genetic changes in yeast strains treated with HAP.
 Materials and methods. The alpha-test is based on mating type regulation and detects cell type switch from to a in heterothallic yeast Saccharomyces cerevisiae. The frequency of mating type switching reflects level of both spontaneous and induced by a mutagen DNA instability. The alpha-test may be performed in two variants: illegitimate hybridization and cytoduction. Conducting both complementary tests and analysis of phenotypes of the illegitimate hybrids and cytoductants allows to detect the full spectrum of genetic events that lead to mating type switching, such as chromosome III loss and chromosome III arm loss, mutations and temporary lesions, recombination and conversion.
 Results. HAP increases the frequency of illegitimate hybridization by 5-fold, and illegitimate cytoduction by 10-fold. A large proportion of the primary lesions induced by HAP causes temporary mating type switch and the remainder parts are converted into inherited point mutations.
 Conclusion. The alpha-test can detect HAP-induced base modifications and may be used to investigate the ratio between correct and error-prone processing of such primary DNA lesions. Like other genetic toxicology tests the alpha-test has limitations, which are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call