Abstract
Topologically ordered systems in the presence of symmetries can exhibit new structures which are referred to as symmetry enriched topological (SET) phases. We introduce simple methods to detect the SET order directly from a complete set of topologically degenerate ground state wave functions. In particular, we first show how to directly determine the characteristic symmetry fractionalization of the quasiparticles from the reduced density matrix of the minimally entangled states. Second, we show how a simple generalization of a non-local order parameter can be measured to detect SETs. The usefulness of the proposed approached is demonstrated by examining two concrete model states which exhibit SET: (i) a spin-1 model on the honeycomb lattice and (ii) the resonating valence bond state on a kagome lattice. We conclude that the spin-1 model and the RVB state are in the same SET phases.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have