Abstract

In this study, we investigated the influences of stratospheric intrusion (SI) on the tropospheric ozone (O3) at Lulin Atmospheric Background Station (LABS, 2862 m MSL), a representative high-altitude site in East Asia. Thresholds for surface O3, carbon monoxide (CO), and relative humidity (RH) were set to identify SI events at LABS. Accordingly, 3.0% of the observation period was impacted by SI leading to a net O3 enhancement of 14.6 ± 9.6 ppb at LABS. Factors influencing the two most common SI event types affecting LABS, i.e. tropopause folds (major) and tropical cyclones (minor), were discussed. We utilized ERA5 reanalysis products (meteorology and O3) to trace and analyze the pathway and mechanism of these SI types over sub-tropical East Asia. With a conceptual model, we illustrate two driving circulations for SI air at ∼200 hPa that affect subtropical East Asia. SI air generated due to Rossby wave breaks are transported equatorward and downward into the troposphere. The southern westerlies passing south of the Tibetan Plateau can further push the SI air eastward. A SI event in 2007 with a significant O3 enhancement of 43.4 ppb caused by typhoon Nari was detected and discussed to depict the second SI type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.