Abstract

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely applied in the analysis of phospholipids in biological samples. However, it remains a challenge to improve the sensitivity and reproducibility and to control the background noise of matrices. In this study, black phosphorus nanomaterial was used as the matrix of MALDI-MS, and microchannel technique was combined. This microchannel-integrated black phosphorus-assisted laser desorption/ionization (BPALDI) MS approach can effectively detect a variety of lipids with a small amount of sample, and has high sensitivity for phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) with a detection limit of 0.2 μg/mL. Compared with traditional matrices, BPALDI-MS has the advantages of high sensitivity, good reproducibility, and high salt tolerance. This method was successfully applied in the detection of serum PC/LPC ratios in children patients with asthma or bronchopneumonia. This work provides a novel application of black phosphorus matrix and microchannel technique, and gives new insights into method development of rapid screening and identification of disease indicators in biological fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call