Abstract
Because some significant outbreaks of human salmonellosis have been traced to contaminated animal feed, the rapid and efficient detection of Salmonella in feed is essential. However, the current U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM) culture method that uses lactose broth as a preenrichment medium has not reliably supported the results of real-time PCR assays for certain foods. We evaluated the BAM culture method and a quantitative real-time PCR (qPCR) assay using two preenrichment media, modified buffered peptone water and lactose broth, to detect Salmonella enterica subsp. enterica serovar Cubana in naturally contaminated chick feed. After 24 h of incubation, the qPCR method was as sensitive as the culture method when modified buffered peptone water was used as the preenrichment medium but less sensitive than culture when lactose broth was used. After 48 h of incubation, detection of Salmonella Cubana by qPCR and by culture in either preenrichment medium was equivalent. We also compared the performance of the traditional serotyping method, which uses pure cultures of Salmonella grown on blood agar, to two molecular serotyping methods. The serotyping method based on whole genome sequencing also requires pure cultures, but the PCR-based molecular serotyping method can be done directly with the enriched culture medium. The PCR-based molecular serotyping method provided simple and rapid detection and identification of Salmonella Cubana. However, whole genome sequencing allows accurate identification of many Salmonella serotypes and highlights variations in the genomes, even in tight genomic clusters. We also compared the genome of the chick feed isolate with 58 Salmonella Cubana strains in GenBank and found that the chick feed isolate was very closely related to an isolate from a foodborne outbreak involving alfalfa sprouts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.