Abstract
One of the simplest ways to predict ligand binding sites is to identify pocket-shaped regions on the protein surface. Many programs have already been proposed to identify these pocket regions. Examination of their algorithms revealed that a pocket intrinsically has two arbitrary properties, "size" and "depth". We proposed a new definition for pockets using two explicit adjustable parameters that correspond to these two arbitrary properties. A pocket region is defined as a space into which a small probe can enter, but a large probe cannot. The radii of small and large probe spheres are the two parameters that correspond to the "size" and "depth" of the pockets, respectively. These values can be adjusted individual putative ligand molecule. To determine the optimal value of the large probe spheres radius, we generated pockets for thousands of protein structures in the database, using several size of large probe spheres, examined the correspondence of these pockets with known binding site positions. A new measure of shallowness, a minimum inaccessible radius, R(inaccess), indicated that binding sites of coenzymes are very deep, while those for adenine/guanine mononucleotide have only medium shallowness and those for short peptides and oligosaccharides are shallow. The optimal radius of large probe spheres was 3-4 A for the coenzymes, 4 A for adenine/guanine mononucleotides, and 5 A or more for peptides/oligosaccharides. Comparison of our program with two other popular pocket-finding programs showed that our program had a higher performance of detecting binding pockets, although it required more computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.