Abstract
Processing of multispectral images is becoming an important issue, especially in terms of data mining for disease diagnosis. We report here an original image analysis procedure developed in order to compare 42 infrared multispectral images acquired on human ascending aortic healthy and pathological tissues. Each image contained about 2500 infrared absorption spectra, each composed of 1641 variables (wavenumbers). To process this large data set, we have restricted the spectral window used to the 1800-950 cm(-1) spectral range and selected 100 spectra from the aortic media, which is the most altered part of the aortic tissue in aneurysms. Prior to this selection, a spectral quality test was performed to eliminate 'bad' spectra. Our data set was first subjected to a discriminant analysis, which allowed separation of aortic tissues in two groups corresponding respectively to normal and aneurysmal states. Then a K-means analysis, based on 20 groups, allowed reconstruction of infrared images using false-colours and discriminated between pathological and healthy tissues. These results demonstrate the usefulness of such data processing methods for the analysis and comparison of a set of spectral images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.