Abstract
Non-technical losses (NTL), which occur up to 40% of the total electric transmission and distribution power, create many challenges worldwide. These losses have a severe impact on distribution utilities and adversely affect the performance of electrical distribution networks. Furthermore, the depreciation of these NTL reduces the requirement of new power plants to fulfill the demand-supply gap. Hence, NTL is an emerging research area for electrical engineers. This paper proposed a model for the detection of non-technical losses based on machine learning and feature engineering. Experimental results check the performance of the proposed model. These results clearly show that this proposed detection model has better accuracy, precision, recall, F1 score, and AUC score than other existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.