Abstract
Intrusion detection systems are one of the most important tools used against the threats to network security in ever-evolving network structures. Along with evolving technology, it has become a necessity to design powerful intrusion detection systems and integrate them into network systems. The main purpose of this research is to develop a new method by using different techniques together to increase the attack detection rates. Negative selection algorithm, a type of artificial immune system algorithms, is used and improved at the stage of detector generation. In phase of the preparation of the data, information gain is used as feature selection and principal component analysis is used as dimensionality reduction method. The first method is the random detector generation and the other one is the method developed by combining the information gain, principal component analysis, and genetic algorithm. The methods were tested using the KDD CUP 99 data set. Different performance values are measured, and the results are compared with different machine learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.