Abstract

Measurement of nanoparticle (NP) concentration and size by single-particle inductively coupled plasma mass spectrometry (spICP-MS) usually requires the use of a NP reference material to determine the loss of NPs and/or ions during their transport from the sample solution to the detection system. The determination of this loss, qualified as nebulization efficiency (ηNebulization) and/or transport efficiency (ηTransport), is time-consuming, costly and lacks reliability. Nebulization of the NPs directly into the plasma (without a spray chamber) results in ηNebulization = 100% and is thus a promising strategy to avoid these calibration steps. In this work, we used the μ-dDIHEN introduction system: a demountable direct injection high-efficiency nebulizer (dDIHEN) hyphenated to a flow-injection valve and a gas displacement pump. For the first time with a continuous flow nebulizer, complete transport efficiency was reached (i.e. ηTransport = 100%). Operated at a very low uptake rate (as low as 8μLmin-1), the μ-dDIHEN accurately and reproducibly determined average diameters of Au-, Ag- and Pt-NPs, in full agreement with their reference values. It was also successfully tested for Au-NPs in complex matrices, such as surface waters. spICP-MS analyses with the μ-dDIHEN sample introduction system only require a dissolved standard calibration to determine NP average diameter (dNPs in nm) and number concentration (NNPs) from the simplified set of equations: [Formula: see text] and [Formula: see text]Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call