Abstract
ABSTRACTHigh-energy, self-ion implantation has been used to form deep gettering layers in Si. Subsequently samples have been contaminated with Cu and subjected to heat treatment. The residual defects act as gettering centres for Cu. The decoration of defects byCu making them detectable by secondary ion mass spectromety analysis. Metastable defect complexes have been detected which, because of their small size, are not directly detectable by other analytical techniques such as transmission electron microscopy and MeV-particle channeling. These defects are probably of interstitial type and have been found mainly midway between the sample and the projected ion range, i.e. around Rp/2. The gettering ability of these small defect complexes may largely exceed that of the post-anneal damage at the projected i.e range, Rp. The results obtained demonstrate that by means of metal gettering the formation, growth and dissolution of very small defect complexes in ion-implanted Si can be studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have