Abstract

The electrical transport in graphene interfaced with different ions in solution gated graphene field effect transistors (GFETs) is the subject of active studies due to its importance in sensor fabrication. Most of the developed GFET biological sensors use graphene that has been modified. The difficulty in the modification procedure and the reduction in quality of graphene that it causes are important drawbacks for applications. Therefore, we focus on GFETs based on unmodified graphene gated by aqueous solutions containing lysine amino acids. We observed that an increase in the ionic concentration of lysine in these solutions leads to a suppression of unipolar electron conductance of graphene in GFETs. This dependence is opposite to the dependence typically observed in gating solutions containing smaller atomic ions. We attribute the observed suppression to electric field screening of the graphene surface from water molecules by lysine ions which are larger and have lower charge density compared to atomic ions. This novel phenomenon leads to an overall decrease of surface charge density in molecular layers formed at the graphene interface and can be applied in GFET sensors with unmodified graphene that detect the presence and concentration of large molecules in the gating solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.