Abstract

For low-resource languages like Uyghur, data sparseness is always a serious problem in related information processing, especially in some tasks based on parallel texts. To enrich bilingual resources, we detect Chinese and Russian loan words from Uyghur texts according to phonetic similarities between a loan word and its corresponding donor language word. In this paper, we propose a novel approach based on perceptron model to discover loan words from Uyghur texts, which consider the detection of loan words in Uyghur as a classification procedure. The experimental results show that our method is capable of detecting the Chinese and Russian loan words in Uyghur Texts effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.