Abstract

ESPI and 3D pulsed Digital Holography have been applied to detect inhomogeneities inside a metal cylinder. A shaker was employed to produce a mechanical wave that propagates through the inner structure of the cylinder in such a way that it generates vibrational resonant modes on the cylinder surface. An out of plane ESPI optical sensitive configuration was used to detect vibrational resonant modes. A 3D multi-pulse digital holography system was used to obtain quantitative deformation data of the dynamically moving cylinder. The local decrease in structural stiffness inside the cylinder due to an inhomogeneity produces an asymmetry in the resonant mode shape. Results show that the inhomogeneity produces an asymmetry in its vibrational resonant modes. The method may be reliably used to study and compare data from inside homogeneous and inhomogeneous solid materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.