Abstract
Recombination during the PCR amplification of DNA templates can be a serious problem for those seeking to genotype heterogeneous populations, yet a boon to those seeking to enhance variation during in vitro evolution. Here, the extent to which PCR generates chimeric full-length products was estimated using a powerful restriction fragment-length polymorphism (RFLP) assay involving the use of fluorescently labeled PCR primers. Three different RNA-encoding DNA templates were assayed: (i) one for a group I ribozyme, (ii) one for a 16S ribosomal RNA (rRNA), and (iii) one for a messenger RNA (mRNA). In all cases, the observed frequency of chimeric PCR products exceeded 20%, and longer templates appear to produce more chimeric products. Although two of these templates have the potential to form secondary structures during the PCR, this tendency does not seem to heighten recombination frequency. These results corroborate previous studies that show that the production of chimeras can be best attenuated to a certain extent by varying the extension times in PCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.