Abstract

Cassava, a crop of importance for subsistence farming in Africa, Asia, and Latin America, has the potential to benefit from global economic integration as a versatile industrial resource. Enhancing cassava productivity is not just a matter of agricultural competitiveness but a crucial step toward ensuring many communities' food security and livelihoods. Given its high performance in marginal environments, where climate change poses threats, ensuring food security and livelihoods relies on rapidly adapting cassava. This study aimed to develop a protocol that swiftly transitions cassava embryogenic short-period liquid suspension cultures, facilitating the regeneration of genetically stable in vitro plants. The resulting protocol, with its potential to be a foundational component in future technologies employing various genome editing or genetic modification techniques, holds promise for the advancement of cassava biotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.