Abstract
Here we show that a simple paper-based electrochemical sensor, fabricated by paper folding, is able to detect a 30-base nucleotide sequence characteristic of DNA from the hepatitis B virus (HBV) with a detection limit of 85 pM. This device is based on design principles we have reported previously for detecting proteins via a metalloimmunoassay. It has four desirable attributes. First, its design combines simple origami (paper folding) assembly, the open structure of a hollow-channel paper analytical device to accommodate micrometer-scale particles, and a convenient slip layer for timing incubation steps. Second, two stages of amplification are achieved: silver nanoparticle labels provide a maximum amplification factor of 250 000 and magnetic microbeads, which are mobile solid-phase supports for the capture probes, are concentrated at a detection electrode and provide an additional ∼25-fold amplification. Third, there are no enzymes or antibodies used in the assay, thereby increasing its speed, stability, and robustness. Fourth, only a single sample incubation step is required before detection is initiated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.