Abstract

A highly sensitive immunoassay utilizing surface-enhanced Raman scattering (SERS) has been developed with a new Raman reporter and a unique SERS-active substrate incorporated into a microfluidic device. An appropriately designed Raman reporter, basic fuchsin (FC), gives strong SERS enhancement and has the ability to bind both the antibody and gold nanostructures. The fuchsin-labeled immuno-Au nanoflowers can form a sandwich structure with the antigen and the antibody immobilized on the SERS-active substrate based on Au–Ag coated GaN. Our experimental results indicate that this SERS-active substrate with its strong surface-enhancement factor, high stability and reproducibility plays a crucial role in improving the efficiency of SERS immunoassay. This SERS assay was applied to the detection of Hepatitis B virus antigen (HBsAg) in human blood plasma. A calibration curve was obtained by plotting the intensity of SERS signal of FC band at 1178cm−1 versus the concentration of antigen. The low detection limit for Hepatitis B virus antigen was estimated to be 0.01IU/mL. The average relative standard deviation (RSD) of this method is less than 10%. This SERS immunoassay gives exact results over a broad linear range, reflecting clinically relevant HBsAg concentrations. It also exhibits high biological specificity for the detection of Hepatitis B virus antigen

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call