Abstract

Glycated hemoglobin (HbA1c), a marker for glycine level in blood, while detecting over a long period of time (up to 2–3 months) shows consistency. Therefore, HbA1c has been mostly used and indeed an established test for monitoring the glycemic control in persons suffering from diabetes. 3D-structured reduced graphene oxide (rGO), multiwalled carbon nanotubes (MWCNT) and platinum nanoparticles (PtNPs) composite (PtNPs/rGO–MWCNT) were synthesized and used as interface for the development of an electrochemical HbA1c biosensor. The network structure of rGO–MWCNT nanocomposite provides more active sites for Pt deposition and the synergistic effect of rGO, MWCNTs and PtNPs significantly improved the electrochemical performance of the working electrode. The structure of PtNPs/rGO–MWCNT nanocomposite was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance study (EIS). This biosensor exhibited a response time of less than 3s, a wide linear concentration range of 0.05–1000μM with detection limit of 0.1μM, good repeatability and satisfactory reproducibility. The biosensor retained 50% of its initial response after 12 weeks at 25°C. The proposed biosensor was successfully applied for the determination of HbA1c concentration in human blood samples with recoveries between 93.7 and 98.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.