Abstract
In this report, 8- and 2-azidoadenosine 5'-[gamma-32P]triphosphate were used to examine cerebrospinal fluid (CSF) samples for the presence of an ATP binding protein unique to individuals with Alzheimer disease (AD). A 42-kDa ATP binding protein was found in the CSF of AD patients that is not observed in CSF from normal patients or other neurological controls. The photolabeling is saturated with 30 microM 2-azidoadenosine 5'-[gamma-32P]triphosphate. Photoinsertion can be totally prevented by the addition of 25 microM ATP. Photoinsertion of 2-azidoadenosine 5'-triphosphate into the protein is only weakly protected by other nucleotides such as ADP and GTP, indicating that this is a specific ATP binding protein. A total of 83 CSF samples were examined in a blind manner. The 42-kDa protein was detected in 38 of 39 AD CSF samples and in only 1 of 44 control samples. This protein was identified as glutamine synthetase [GS; glutamate-ammonia ligase; L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] based on similar nucleotide binding properties, comigration on two-dimensional gels, reaction with a polyclonal anti-GS antibody, and the presence of significant GS enzyme activity in AD CSF. In brain, GS plays a key role in elimination of free ammonia and also converts the neurotransmitter and excitotoxic amino acid glutamate to glutamine, which is not neurotoxic. The involvement of GS, if any, in the onset of AD is unknown. However, the presence of GS in the CSF of terminal AD patients suggests that this enzyme may be a useful diagnostic marker and that further study is warranted to determine any possible role for glutamate metabolism in the pathology of AD.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have