Abstract
Downy mildew, caused by Sclerospora graminicola, is an economically important disease of pearl millet in the semiarid regions of Asia and Africa. Amplified restriction fragment length polymorphism (AFLP) was used to detect the extent of genomic variation among 19 fungal isolates from different cultivars of pearl millet grown in various regions of India. Fourteen AFLP primer combinations produced 184 polymorphic bands. An unweighted pair-group method of averages cluster analysis represented by dendrogram and principal coordinate analysis separated the mildew collections into four distinct groups. Isolates having characteristic opposite mating abilities, geographic relatedness, virulence, common host cultivars, and changes through asexual generations reflected heterogeneity of the pathogen. The use of AFLP to detect genetic variation is particularly important in selecting mildew isolates to screen breeding material for identification of resistant millet and monitoring changes in S. graminicola in relation to changes in host for effective disease management.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have