Abstract

Detecting the presence of a white Gaussian signal distorted by a noisy time-varying channel is addressed by means of three different detectors. First, the generalized likelihood ratio test (GLRT) is found for the case where the channel has no temporal structure, resulting in the well-known Bartlett's test. Then it is shown that, under the transformation group given by scaling factors, a locally most powerful invariant test (LMPIT) does not exist. Two alternative approaches are explored in the low signal-to-noise ratio (SNR) regime: the first assigns a prior probability density function (pdf) to the channel (hence modeled as random), whereas the second assumes an underlying basis expansion model (BEM) for the (now deterministic) channel and obtains the maximum likelihood (ML) estimates of the parameters relevant for the detection problem. The performance of these detectors is evaluated via Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.