Abstract
In this letter, spectrum sensing for wide-sense stationary signals with temporal correlation is studied. In order to perform uniformly most powerful invariant test (UMPIT) or locally most powerful invariant test (LMPIT), the ratio of the distributions of the maximum invariant statistics is derived in closed-form using Wijsman’s theorem. This ratio shows that UMPIT can be obtained when the signal-to-noise ratio (SNR) and the normalized auto-correlation matrix of the primary user signal are both known. In addition, the LMPIT with nominal SNR (LMPIT-NSNR) and the LMPIT with improved sample auto-correlation matrix (LMPIT-ISAC) are proposed based on this ratio. LMPIT-NSNR and LMPIT-ISAC are suitable for the case where the normalized auto-correlation matrix is known and the SNR is unknown, and for the case where both the normalized auto-correlation matrix and the SNR are unknown, respectively. Simulation results show that the performance of LMPIT-NSNR is robust to the fixed nominal SNR value and can approach the performance of UMPIT, and the LMPIT-ISAC performs better than the traditional covariance-based test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.