Abstract
To reduce the risk of foodborne-illness, produce processors currently clean and sanitize food contact surfaces daily before production starts. Current methods to verify the efficacy of cleaning procedures include visual inspection and direct surface sampling using ATP bioluminescence assays and culturing methods. To assess the possibility of augmenting these existing verification methods, this study investigated the potential to use imaging techniques to detect fresh-cut produce residues. A laboratory hyperspectral system was used to image produce residues obtained from a commercial processing plant, cantaloupe and honeydew residues generated in-house, and selected cleaning and sanitizing agents. Test materials were dispensed onto stainless steel and high density polyethylene coupons. The coupons were selected to represent common surfaces used in production facilities. Analysis of VIS/NIR hyperspectral reflectance and fluorescence images showed that the cleaning and sanitizing agents were essentially undetectable; thus, demonstrating that presence of these substances would not result in false-positives. In contrast, produce residues in microgram quantities showed fluorescence peaks encompassing the regions from 480 to 560 nm and from 670 to 690 nm. However, auto-fluorescence responses of high density polyethylene at shorter wavelengths were found to obscure the 480 to 560 nm peaks for some residues. These results suggest that fluorescence imaging techniques can be used to enhance surface hygiene inspection in produce processing plants and, given the immediate availability of imaging results, to help optimize routine cleaning procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Food Measurement & Characterization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.