Abstract
Infestations or parasitism by forestry pests can lead to adverse consequences for tree growth, development, and overall tree quality, ultimately resulting in ecological degradation. The identification and localization of forestry pests are of utmost importance for effective pest control within forest ecosystems. To tackle the challenges posed by variations in pest poses and similarities between different classes, this study introduced a novel end-to-end pest detection algorithm that leverages deep convolutional neural networks (CNNs) and a transfer learning technique. The basic architecture of the method is YOLOv5s, and the C2f module is adopted to replace part of the C3 module to obtain richer gradient information. In addition, the DyHead module is applied to improve the size, task, and spatial awareness of the model. To optimize network parameters and enhance pest detection ability, the model is initially trained using an agricultural pest dataset and subsequently fine-tuned with the forestry pest dataset. A comparative analysis was performed between the proposed method and other mainstream target detection approaches, including YOLOv4-Tiny, YOLOv6, YOLOv7, YOLOv8, and Faster RCNN. The experimental results demonstrated impressive performance in detecting 31 types of forestry pests, achieving a detection precision of 98.1%, recall of 97.5%, and mAP@.5:.95 of 88.1%. Significantly, our method outperforms all the compared target detection methods, showcasing a minimum improvement of 2.1% in mAP@.5:.95. The model has shown robustness and effectiveness in accurately detecting various pests.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have