Abstract
Digital image manipulation techniques are becoming increasingly sophisticated and widespread. Copy-move forgery is one of the frequently used manipulation techniques. In this paper, we propose a keypoint based copy-move forgery detection (CMFD) technique, which is a combination of accelerated KAZE (AKAZE) and scale invariant feature transform (SIFT) features. By using AKZAE and SIFT, a significant number of keypoints are extracted even in a smooth region to detect the manipulated regions efficiently. After formation of the mixed keypoints, the g2NN is used for matching process to locate the duplicated regions. The experimental results show that the proposed method can detect the duplicated regions even if the image is post-processed with scaling, rotation, noise and JPEG compression operations. To validate the robustness and effectiveness of the proposed method, a statistical analysis is performed using the ANOVA method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.