Abstract

Electrochemical detection of protein binding at physiological salt concentration by planar field effect transistor platforms has yet to be documented convincingly. Here we report detection of streptavidin and clinically relevant levels of biotinylated monokine induced by interferon γ (MIG) at physiological salt concentrations with AlGaN heterojunction field effect transistors (HFETs). The AlGaN HFETs are functionalized with a silane linker and analyte-specific affinity elements. Polarity of sensor responses is as expected from n-type HFETs to negatively and positively charged analytes. Sensitivity of the HFET sensors increases when salt concentration decreases, and the devices also exhibit dose-dependent responses to analyte. Detection of clinically relevant MIG concentrations at physiological salt levels demonstrates the potential for AlGaN devices to be used in development of in vivo biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.