Abstract
BackgroundOne of the most severe traumatic brain injuries, the subdural haematoma, is related to damage and rupture of the bridging veins, generating an abnormal collection of blood between the dura mater and arachnoid mater. Current numerical models of these vessels rely on very simple geometries and material laws, limiting its accuracy and bio-fidelity. MethodsIn this work, departing from an existing human head numerical model, a realistic geometry for the bridging veins was developed, devoting special attention to the finite elements type employed. A novel and adequate constitutive model including damage behavior was also successfully implemented. FindingsResults attest that vessel tearing onset was correctly captured, after comparison against experiments on cadavers. InterpretationDoing so, the model allow to precisely predict the individual influence of kinematic parameters such as the pulse duration, linear and rotational accelerations in promoting vessel tearing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.