Abstract

Evaluation of respiratory activity during sleep is essential in order to reliably diagnose sleep disorder breathing (SDB); a condition associated with serious cardio-vascular morbidity and mortality. In the current study, we developed and validated a robust automatic breathing-sounds (i.e. inspiratory and expiratory sounds) detection system of audio signals acquired during sleep. Random forest classifier was trained and tested using inspiratory/expiratory/noise events (episodes), acquired from 84 subjects consecutively and prospectively referred to SDB diagnosis in sleep laboratory and in at-home environment. More than 560,000 events were analyzed, including a variety of recording devices and different environments. The system's overall accuracy rate is 88.8%, with accuracy rate of 91.2% and 83.6% in in-laboratory and at-home environments respectively, when classifying between inspiratory, expiratory, and noise classes. Here, we provide evidence that breathing-sounds can be reliably detected using non-contact audio technology in at-home environment. The proposed approach may improve our understanding of respiratory activity during sleep. This in return, will improve early SDB diagnosis and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.