Abstract

Tumor is basically a most common disease of brain and the Brain Tumor (BT) treatment has crucial significance. A diagnostic procedure called MRI image that is employed for detecting BT. It is the utmost important and intricate tasks in numerous medical-image applications since it typically involves a huge quantity of data. A lot of methods were applied in BT detection ranging as of image processing to examine the BT; however, the prevailing BT technique is tedious and less effective. So, this paper proposed the detection of the BT in MRI images utilizing optimized ANFIS classifier. Originally, the input MR image is preprocessed utilizing Gaussian Filter (GF) that removes the noise from the inputted image, additionally, the non-brain tissues (NBT) are removed using the technique of skull stripping (SS). After that, segmentation is performed wherein the tumor part is segmented utilizing CBAC technique and edema part is segmented utilizing HLSS segmentation technique. Then, GLCM in addition to GLRLM features are extracted afterward that extorted features is chosen by BFO algorithm. Finally, the selected features inputted to the optimized ANFIS classifier that classifies the tumor class types as Meningioma, Glioma, along with Pituitary. In ANFIS, the optimization procedure is achieved utilizing the PSO. The proposed system’s performance is contrasted to the prevailing systems regarding precision, recall, specificity, sensitivity, accuracy, together with F-Measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.