Abstract

PurposeThe potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems (ITSs). VANETs have different characteristics and system architectures from mobile ad hoc networks (MANETs), with a primary focus on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. But protecting VANETs from malicious assaults is crucial because they can undermine network security and safety.Design/methodology/approachThe black hole attack is a well-known danger to VANETs. It occurs when a hostile node introduces phony routing tables into the network, potentially damaging it and interfering with communication. A safe ad hoc on-demand distance vector (AODV) routing protocol has been created in response to this issue. By adding cryptographic features for source and target node verification to the route request (RREQ) and route reply (RREP) packets, this protocol improves upon the original AODV routing system.FindingsThrough the use of cryptographic-based encryption and decryption techniques, the suggested method fortifies the VANET connection. In addition, other network metrics are taken into account to assess the effectiveness of the secure AODV routing protocol under black hole attacks, including packet loss, end-to-end latency, packet delivery ratio (PDR) and routing request overhead. Results from simulations using an NS-2.33 simulator show how well the suggested fix works to enhance system performance and lessen the effects of black hole assaults on VANETs.Originality/valueAll things considered, the safe AODV routing protocol provides a strong method for improving security and dependability in VANET systems, protecting against malevolent attacks and guaranteeing smooth communication between cars and infrastructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call