Abstract

We demonstrate an affinity system based on the interaction of two types of nanoparticles. The first consists of upconverting luminescent NaYF4:Yb,Er nanoparticles (UCNPs) with a size of 40–100 nm, absorbing light in the infrared and showing luminescence at 521, 543 and at 657 nm. The second consists of (red) gold nanoparticles (Au-NPs) with a size of about 50 nm and capable of absorbing the green luminescence of the UCNPs. By labeling the UCNPs with avidin and the AuNPs with biotin we have established a model system for a self referenced affinity system applicable to sensing in biological samples. In the presence of avidin-modified UCNPs, the biotinylated Au-NPs can be detected in the range from 12 to 250 μg mL−1 by ratioing the intensity of the red (analyte-independent) emission to that of the green (analyte-dependent) emission band. The nanoparticles were characterized in terms of size and composition using transmission electron microscopy, thermogravimetry, and FTIR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.