Abstract

To achieve classification and concentration detection of cancer biomarkers, we propose a method that combines terahertz (THz) spectroscopy, metasurface sensors, and machine learning. A metasurface sensor suitable for biomarker detection was designed and fabricated with five resonance frequencies in the range of 0.3-0.9THz. We collected biomarkers of five types and nine concentrations at 100 sets of time-domain spectra per concentration. The spectrum is processed by noise reduction and fast Fourier transform to obtain the frequency-domain spectrum. Five machine learning algorithms are used to analyze time- and frequency-domain spectra and ascertain which algorithm is more suitable for the classification of the biomarker THz spectrum. Experimental results show that random forest can better distinguish five biomarkers with an accuracy of 0.984 for the time-domain spectrum. For the frequency-domain spectrum, the support vector machine performs better, with an accuracy of 0.989. For biomarkers at different concentrations, we used linear regression to fit the relationship between biomarker concentration and frequency shift. Experimental results show that machine learning can distinguish different biomarker species and their concentrations by the THz spectrum. This work provides an idea and data processing method for the application of THz technology in biomedical detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.