Abstract

Biogenic films are very thin surface oils, frequently observed near aquaculture farms, that affect the roughness and the optical properties of the sea surface, making them visible in SAR and multispectral images. The purpose of this study is to investigate the potential of satellite SAR and multispectral sensors in the detection of biogenic oil films near aquaculture farms. Sentinel-1 SAR and Sentinel-2 multispectral data were exploited to detect the films around three aquaculture sites. The study is divided in three stages: (a) preprocessing, (b) main process and (c) accuracy assessment. The preprocessing stage includes subset, filtering, land masking and image corrections. The main process was similar for both datasets, using an adaptive thresholding method to identify dark formations, extract and classify them. Finally, the performance of the algorithm was evaluated based on the estimation of standard classification error statistics. The evaluation of the results was based on empirical photointerpretation and in situ photos. The results are successful and promising, with overall accuracy over 70%, while both sensors are proved to be effective in the detection, with Sentinel-1 SAR presenting slightly better accuracy (81%) than Sentinel-2 MSI (70%). There is no evidence of these films causing stress to the aquaculture farms or the surrounding environment; however, our knowledge on their presence, amount and dissolution is limited and further knowledge could contribute to efficient feeding management and fish welfare.

Highlights

  • Satellite remote sensing (RS) offers a great advantage in continuous monitoring in terms of spatial and temporal coverage for large, inaccessible areas

  • The AOI in Site 1 contains one farm, Site 2 contains two farms and Site 3 contains five farms, so we examined a total of eight farms, one by one

  • The results were classified in two classes, “Biogenic Oil Film” and “Lookalike”

Read more

Summary

Introduction

Satellite remote sensing (RS) offers a great advantage in continuous monitoring in terms of spatial and temporal coverage for large, inaccessible areas. The properties of different sensors provide a wide range of useful information on sea status and oceanographic phenomena (low wind areas, sea fronts, currents, oil spills, ocean color, surface temperature etc.). Aquaculture processes both affect and are affected by the marine environment in many ways. Aquaculture industry is dealing with constant challenges in terms of sustainability and viability, if it is in a harmonious coexistence with other activities in the coastal zone. Proper management is one of the challenges that is vital for both aquaculture industry and the environment.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call