Abstract
Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. J. Neurophysiol. 80: 2848-2859, 1998. Psychophysical studies have shown that the ability to detect auditory signals embedded in noise improves when signal and noise sources are widely separated in space; this allows humans to analyze complex auditory scenes, as in the cocktail-part effect. Although these studies established that improvements in detection threshold (DT) are due to binaural hearing, few physiological studies were undertaken, and very little is known about the response of single neurons to spatially separated signal and noise sources. To address this issue we examined the responses of neurons in the frog inferior colliculus (IC) to a probe stimulus embedded in a spatially separated masker. Frogs perform auditory scene analysis because females select mates in dense choruses by means of auditory cues. Results of the extracellular single-unit recordings demonstrate that 22% of neurons (A-type) exhibited improvements in signal DTs when probe and masker sources were progressively separated in azimuth. In contrast, 24% of neurons (V-type) showed the opposite pattern, namely, signal DTs were lowest when probe and masker were colocalized (in many instances lower than the DT to probe alone) and increased when the two sound sources were separated. The remaining neurons demonstrated a mix of these two types of patterns. An intriguing finding was the strong correlation between A-type masking release patterns and phasic neurons and a weaker correlation between V-type patterns and tonic neurons. Although not decisive, these results suggest that phasic units may play a role in release from masking observed psychophysically. Analysis of the data also revealed a strong and nonlinear interaction among probe, masker, and masker azimuth and that signal DTs were influenced by two factors: 1) the unit's sensitivity to probe in the presence of masker and 2) the criterion level for estimating DT. For some units, it was possible to examine the interaction between these two factors and gain insights into the variation of DTs with masker azimuth. The implications of these findings are discussed in relation to signal detection in the auditory system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.