Abstract
Carotid artery disease, the pathological condition of carotid arteries, is considered as the most significant cause of cerebral events and stroke. Carotid artery disease is considered as an inflammatory process, which involves the deposition and accumulation of atherosclerotic plaque inside the carotid intima, resulting in the narrowing of the arteries. Carotid artery stenosis (CAS) is either symptomatic or asymptomatic and its presence and location is determined by different imaging modalities, such as the carotid duplex ultrasound, the computed tomography angiography, the magnetic resonance angiography (MRA) and the cerebral angiography. The aim of this study is to present a machine learning model for the diagnosis and identification of individuals of asymptomatic carotid artery stenosis, using as input typical health data. More specifically, the overall model is trained with typical demographics, clinical data, risk factors and medical treatment data and is able to classify the individuals into high risk (Class 1-CAS group) and low risk (Class 0-non CAS group) individuals. In the presented study, we implemented a statistical analysis to check the data quality and the distribution into the two classes. Different feature selection techniques, in combination with classification schemes were applied for the development of our machine learning model. The overall methodology has been trained and tested using 881 cases (443 subjects in low risk class and 438 in high risk class). The highest accuracy 0.82 and an area under curve 0.9 were achieved using the relief feature selection technique and the random forest classification scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.