Abstract

This study was conducted to establish a rapid and accurate method for identifying aflatoxin contamination in peanut oil. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with either partial least squares discriminant analysis (PLS-DA) or a support vector machine (SVM) algorithm were used to construct discriminative models for distinguishing between uncontaminated and aflatoxin-contaminated peanut oil. Peanut oil samples containing various concentrations of aflatoxin B1 were examined with an ATR-FTIR spectrometer. Preprocessed spectral data were input to PLS-DA and SVM algorithms to construct discriminative models for aflatoxin contamination in peanut oil. SVM penalty and kernel function parameters were optimized using grid search, a genetic algorithm, and particle swarm optimization. The PLS-DA model established using spectral data had an accuracy of 94.64% and better discrimination than did models established based on preprocessed data. The SVM model established after data normalization and grid search optimization with a penalty parameter of 16 and a kernel function parameter of 0.0359 had the best discrimination, with 98.2143% accuracy. The discriminative models for aflatoxin contamination in peanut oil established by combining ATR-FTIR spectral data and nonlinear SVM algorithm were superior to the linear PLS-DA models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.