Abstract

The evaluation of all ribs on thin-slice CT images is time consuming and it can be difficult to accurately assess the location and type of rib fracture in an emergency. The aim of our study was to develop and validate a convolutional neural network (CNN) algorithm for the detection of acute rib fractures on thoracic CT images and to investigate the effect of the CNN algorithm on radiologists' performance. The dataset for development of a CNN consisted of 539 thoracic CT scans with 4906 acute rib fractures. A three-dimensional faster region-based CNN was trained and evaluated by using tenfold cross-validation. For an observer performance study to investigate the effect of CNN outputs on radiologists' performance, 30 thoracic CT scans (28 scans with 90 acute rib fractures and 2 without rib fractures) which were not included in the development dataset were used. Observer performance study involved eight radiologists who evaluated CT images first without and second with CNN outputs. The diagnostic performance was assessed by using figure of merit (FOM) values obtained from the jackknife free-response receiver operating characteristic (JAFROC) analysis. When radiologists used the CNN output for detection of rib fractures, the mean FOM value significantly increased for all readers (0.759 to 0.819, P = 0.0004) and for displaced (0.925 to 0.995, P = 0.0028) and non-displaced fractures (0.678 to 0.732, P = 0.0116). At all rib levels except for the 1st and 12th ribs, the radiologists' true-positive fraction of the detection became significantly increased by using the CNN outputs. The CNN specialized for the detection of acute rib fractures on CT images can improve the radiologists' diagnostic performance regardless of the type of fractures and reader's experience. Further studies are needed to clarify the usefulness of the CNN for the detection of acute rib fractures on CT images in actual clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.