Abstract

In today's environment, video surveillance is critical. When artificial intelligence, machine learning, and deep learning were introduced into the system, the technology had progressed much too far. Different methods are in place using the above combinations to help distinguish various wary activities from the live tracking of footages. Human behavior is the most unpredictable, and determining whether it is suspicious or normal is quite tough. In a theoretical setting, a deep learning approach is utilized to detect suspicious or normal behavior and sends an alarm to the nearby people if suspicious activity is predicted. In this paper, data fusion technique is used for feature extraction which gives an accurate outcome. Moreover, the classes are classified by the well effective machine learning approach of modified deep neural network (M-DNN), that predicts the classes very well. The proposed method gains 95% accuracy, as well the advanced system is contrast with previous methods like artificial neural network (ANN), random forest (RF) and support vector machine (SVM). This approach is well fitted for dynamic and static conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.