Abstract

Abstract This paper presents a pattern recognition approach for current differential relaying of power transmission lines. The current differential method uses spectral energy information provided through a new Fast Discrete S-Transform (FDST). Unlike the conventional S-Transform (ST) technique the new one uses different types of frequency scaling, band pass filtering, and interpolation techniques to reduce the computational cost and remove redundant information. Further due to its low computational complexity, the new algorithm is suitable for real-time implementation. The proposed scheme is evaluated for current differential protection of a transmission line fed from both ends for a variety of faults, fault resistance, inception angles, and significant noise in the signal using computer simulation studies. Also the fundamental amplitude and phase angle of the two end currents and one end voltage are computed with the help of the new formulation to provide fault location with significant accuracy. The results obtained from the exhaustive computation show the feasibility of the new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.