Abstract

We developed sensors and instrumentation dedicated to detection and location of thermal quenches in SRF cavities via 2nd sound events in HeII. We studied 2 types of Quench Detectors (QD): 1) Oscillating Super leak Transducer (OST), 2) LOw REsponse Time resIstive Thermometers (LORETIT). The QD were characterized in He II bath (Temperature T0 = 1.6 K- Tλ. The SRF cavity quench is experimentally simulated using resistors of different sizes and geometries. High pulsed heat flux qP (qP < 2MW/m2) were applied to these heaters and the dynamic response of QD were investigated as function of several parameters (T0, qP, distance to heater). The OST were used for locating quench on different SRF cavities resonating at 2 frequencies f0 (f0 =88 MHz or f0 =352 MHz). The quench dynamics and critical size of normal resistive area leading to quench were investigated. Furthermore, a Second Sound Resonator (SSR) equipped with a pair of OST at each extremity (2nd sound generator (G) and detector (D)), a low thermal capacity heater (G) and a LORETIT (D), was successfully operated in the resonating and in the pulsed mode. The measured 1st sound and 2nd sound spectra were compared theoretical results and a good agreement is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.