Abstract

Rhamnogalacturonan lyase (RG lyase) activity has been detected and its relative activity measured in vivo during the expansion of cotton (Gossypium hirsutum L.) cotyledons. Rhamnogalacturonan (RG) oligomers labeled with a fluorescent tag were injected into the intercellular spaces of cotton cotyledons and, after incubation, the digested substrate was rinsed out. Enzyme digestion products were detected and identified by capillary zone electrophoresis. Rhamnogalacturonan lyase products were identified as such by co-migration with the digestion products of linear RG oligomers when the oligomers were treated with fungal RG lyase but not when treated with fungal RG hydrolase. In addition, reaction of plant RG lyase digestion products of RG oligomers with I(2)/KI, which selectively removes unsaturated galactopyranosyluronic acid (GaLap) residues formed at the non-reducing end of the oligomer, converted the plant digestion products into RG oligomers that co-migrated with fungal RG hydrolase products. The activity of the enzyme in the intercellular spaces of cotton cotyledons is very low and could be detected most easily when not >0.03 nmol of substrate was injected in a approximately 0.7-cm(2) area and incubated in vivo for 2-6 h. Rhamnogalacturonan lyase activity was the highest in rapidly expanding 3- to 4-day-old cotyledons and gradually decreased during the slow-down in expansion over the next 2-3 days. The RG lyase activity was also detected when the APTS (8-aminopyrene-1,3,6-trisulfonic acid, trisodium salt)-labeled substrates were introduced into intercellular spaces by infiltration instead of injection, indicating that the activity was not induced by wounding or released into the apoplast by cell damage. An exo-RG galacturonohydrolase activity was also found, but RG hydrolase and exo-RG rhamnohydrolase were not detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.