Abstract

The detection, localization and characterization of defects in a material or a part that conform a structure is possible by using the transmission and reception of ultrasonic signals. Different strategies are used to achieve extract information from the part under evaluation. For this, it is then possible to use a distributed sensors arrays on the surface of the material and using scanning techniques such as are A-scan or B-scan, where it is possible to increase the level of detail regarding location, orientation and size of defects found, according to the strategy used. However, the systems and inspection techniques are often limited by the geometries and access to different types of structures. Due to these reasons, the acquisition of the returned signals, for identification and attenuation time, can suppress valuable information for accurate characterization of imperfections found in shape and location. In this paper, the use of spectral analysis of the collected signals is proposed as a tool for detection and characterization of defects in a structure. This analysis allows to determining the power distribution in a frequency range. This methodology is useful in non-destructive evaluation when it is not possible to have full access to the structure under inspection. In this case it is applied on a wind turbine operating to make the study of different echoes captured according to the geometry of the part and comparing said conducting analysis with previously established patterns of shapes, orientations, and sizes of defects found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call